

DAYstributed

Serverless for Urgent Edge Computing Scenarios

Università di Pisa

Valerio Besozzi^{1,2}

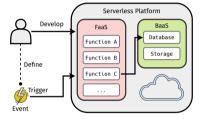
¹Department of Computer Science, University of Pisa ²Institute of Information Science and Technologies "A. Faedo", CNR

May 29, 2025

Urgent Edge Computing (UEC)

Urgent Edge Computing (UEC) integrates the strengths of Urgent Computing and Edge Computing to meet critical, time-sensitive needs [2]:

- **Decentralized Processing:** Executes urgent tasks near data sources to achieve ultra-low latency.
- **Dynamic Resource Management:** Employs priority scheduling and on-demand provisioning to support critical operations.
- **Diverse Applications:** Supports disaster response, environmental monitoring, smart cities, and mass event coordination.


Serverless Computing

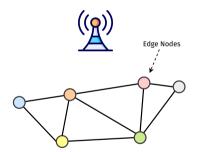
Serverless Computing

Serverless allows users to deploy and execute *granularly* billed and automatically scaled applications, without having to address the underlying operational logic.

Serverless Service Characteristics

Auto-Scaling

Utilization-based billing


Separation of computation and storage

Serverless platforms relies on containers or other forms of lightweight virtualization.

What is SPARE?

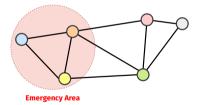
SPARE [1] is a decentralized, urgency-aware serverless platform designed to ensure service continuity in edge environments during emergency scenarios.

- Decentralized Architecture:
 - No centralized entry point is required.
 - Load balancing and task forwarding are handled transparently.
- **Urgency-aware:** Frees computational resources in disaster-affected areas.
- **Optimized for Edge:** Employs MicroVMs and Unikernels for lightweight virtualization.

What is SPARE?

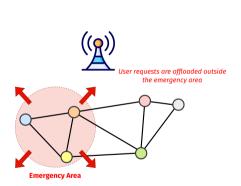
SPARE [1] is a decentralized, urgency-aware serverless platform designed to ensure service continuity in edge environments during emergency scenarios.

- Decentralized Architecture:
 - No centralized entry point is required.
 - Load balancing and task forwarding are handled transparently.
- **Urgency-aware:** Frees computational resources in disaster-affected areas.
- **Optimized for Edge:** Employs MicroVMs and Unikernels for lightweight virtualization.


What is SPARE?

SPARE [1] is a decentralized, urgency-aware serverless platform designed to ensure service continuity in edge environments during emergency scenarios.

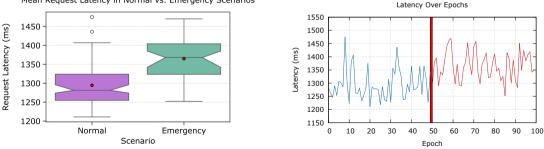
- Decentralized Architecture:
 - No centralized entry point is required.
 - Load balancing and task forwarding are handled transparently.
- **Urgency-aware:** Frees computational resources in disaster-affected areas.
- **Optimized for Edge:** Employs MicroVMs and Unikernels for lightweight virtualization.



What is SPARE?

SPARE [1] is a decentralized, urgency-aware serverless platform designed to ensure service continuity in edge environments during emergency scenarios.

- Decentralized Architecture:
 - No centralized entry point is required.
 - Load balancing and task forwarding are handled transparently.
- **Urgency-aware:** Frees computational resources in disaster-affected areas.
- **Optimized for Edge:** Employs MicroVMs and Unikernels for lightweight virtualization.



Experimental Evaluation

Emergency Allocation

- 8,400 user requests over 100 epochs.
- Simulated both Normal and Emergency scenarios.

Mean Request Latency in Normal vs. Emergency Scenarios

Only a +5.43% increase!

Avg. Latency

(ms)

1294.62

1364.94

Confidence interval at 95%.

Scenario

Normal

Emergency

Median

(CI)^{*}

1281.5

[1271.0, 1296.0]

1368.0

[1342.0, 1386.5]

Thank you for your attention! Any Questions?

Slides proudly made in IATEX

Bibliography

- [1] Valerio Besozzi et al. "SPARE: Self-adaptive Platform for Allocating Resources in Emergencies for Urgent Edge Computing". In: 2025 33rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP). 2025, pp. 137–145. DOI: 10.1109/PDP66500.2025.00027.
- [2] Patrizio Dazzi et al. "Urgent Edge Computing". In: Proceedings of the 4th Workshop on Flexible Resource and Application Management on the Edge. FRAME '24. Pisa, Italy: Association for Computing Machinery, 2024, pp. 7–14. ISBN: 9798400706417. DOI: 10.1145/3659994.3660315. URL: https://doi.org/10.1145/3659994.3660315.