

DAYstributed

Bringing pure parallelism to Python: the UniPi contribution to the EU-funded project NOUS

Università di Pisa

Matteo Della Bartola¹

¹Department of Computer Science, University of Pisa

May 29, 2025

Who am I?

Matteo Della Bartola

Research fellow at the University of Pisa Department of Computer Science.

Working with the Parallel Programming Models (PPM) Group on *NOUS*, an EU-funded project.

Background:

- B.Sc. in Computer Science 2022, University of Pisa
- M.Sc. in Computer Science 2024, University of Pisa
- Research interests: HPC, serverless computing, parallel programming, and more...

The NOUS Project

NOUS Vision

The vision of **NOUS** is to provide a uniquely suitable infrastructure and services to scientists and professionals for running computationally intensive and complex algorithms on a commercial cloud interface.

- **#Compute**: Empowering secure, high-performance and quantum computing through Europe's research network.
- **#Edge**: Decentralized edge computing using local IoT resources for efficient, private data processing.
- **#Data**: Data storage components that are responsible for the data life cycle management.

The NOUS Project: An Overview

Our Contribution: FastFlow \times Python

The **FastFlow-Python** framework simplifies the development of complex parallel architectures while providing two strategies to bypass the GIL:

- \rightarrow Multiprocessing-based approach
- \rightarrow Subinterpreters-based approach

Our Contribution: FastFlow \times Python

The **FastFlow-Python** framework simplifies the development of complex parallel architectures while providing two strategies to bypass the GIL:

- \rightarrow Multiprocessing-based approach
- \rightarrow Subinterpreters-based approach

- Farm
- Pipeline
- All to All

What's Next?

Exploring new horizons for scalable and expressive parallel computing.

Custom Parallel Patterns

- User-defined parallel abstractions
- Extensibility for domain-specific workloads

Distributed Computations

- Multi-node execution and orchestration
- Scale-out for compute-intensive tasks

Thank you for your attention! Any Questions?

Slides proudly made in LATEX