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Stream Processing + Edge Resources

Computing paradigm characterized by the continuous analysis of data
streams (e.g., finding insights, knowledge, analytics)
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WindFlow Library

C++17 library written on top of the FastFlow parallel programming
framework

PipeGraph app;
OP1 oEE m o@om@ oP3 Source src = Source Builder (..)

.withParallelism(2)
.build() ;

Map opl = Map_Builder([] (input_t &t) -> void {..})
.withParallelism(2)
.build() ;

FlatMap op2 = FlatMap Builder([] (input_t &t, Shipper<output_t> &s) {..}
.withParallelism(2)
.build() ;

Aggregation op3 = Aggregation Builder ([] (const output_t &tl,

threads OP1;0P2 const output_t &t2) -> output t {..})
——— Co .withParallelism(2)
.withKeyBy ([] (const output t &t) -> key_t {..})
SRC .withTimeBoundaries (seconds(10), seconds(1l))
E .build() ;
E Sink sink = Sink Builder(..)
\\AON;OPZ .withParallelism(2)
.build() ;
configurable — lock-free queues
concurrency control app .add_source(src) .add (opl) .add (op2) .add (op3) .add_sink (snk) ;
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Hardware Accelerators

Edge resources as complex System-on-Chip devices (CPU+GPU+FPGA+ ...)

GPU-accelerated operators (both stateless and stateful)
*  Micro-batching

* Kernels defined in the runtime system, user provides device
functions called by the kernels

* Automatic H2D and D2H data transfers performed with high
overlapping capabilities

Stateful operators are challenging on GPUs
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Larger-than-Memory Stateful Processing

 Large aggregations over temporal windows

» State might exceed the available memory (especially on Edge resources)
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Different layouts to represent the state on a KVS
* Fragment-based vs window-centric layouts

* Keyed vs unkeyed state objects

Trade-offs between performance-memory footprint-

secondary memory usage
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Research Ideas for the Future

* Dynamic selection of CPU-based or GPU-based operators based on the
workload conditions

e Adapt the machine configuration (e.g., DVFS, idle cores, GPU freq) based
on the actual workload

* Use of lossless compression to further reduce the state size

* Use of WindFlow as a highly efficient system for ML inference

o Why? WindFlow provides advanced functionalities for online stream
transformations, aggregation, sampling, windowing but lacks support for ML model
management. However, ML tools such as TensorFlow, PyTorch provide limited

support to streaming

o How? Embed ML models into WindFlow (e.g., interoperability with external libraries
such as ONNX Runtime), or alternatively use external serving frameworks such as

TensorFlow Serving or TorchServe
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