
Efficient Stream Processing
on Resource-Constrained 

Devices

Contributors: G. Mencagli, M. Danelutto, P. Dazzi, and M. Torquati
10+ students involved over the years (Bachelor, Master)



Stream Processing + Edge Resources

Computing paradigm characterized by the continuous analysis of data 
streams (e.g., finding insights, knowledge, analytics)

29/05/2025 DAYstributed 2025, UniPI 2

data-flow 
graph of 
operators 
and streams

stateful and 
stateless 
operators

HPC 
cluster

Edge device Edge device
Edge device



WindFlow Library

C++17 library written on top of the FastFlow parallel programming 
framework

29/05/2025 DAYstributed 2025, UniPI 3

SRC

OP1;OP2

OP1;OP2

OP3

OP3

SNK

PipeGraph app;

Source src = Source_Builder(…)

.withParallelism(2)

.build();

Map op1 = Map_Builder([](input_t &t) -> void {…})

.withParallelism(2)

.build();

FlatMap op2 = FlatMap_Builder([](input_t &t, Shipper<output_t> &s) {…}

.withParallelism(2)

.build();

Aggregation op3 = Aggregation_Builder([](const output_t &t1,

const output_t &t2) -> output_t {…})

.withParallelism(2)

.withKeyBy([](const output_t &t) -> key_t {…})

.withTimeBoundaries(seconds(10), seconds(1))

.build();

Sink sink = Sink_Builder(…)

.withParallelism(2)

.build();

app.add_source(src).add(op1).add(op2).add(op3).add_sink(snk);

threads

lock-free queues
configurable 
concurrency control



Hardware Accelerators

Edge resources as complex System-on-Chip devices (CPU+GPU+FPGA+ …)

29/05/2025 DAYstributed 2025, UniPI 4

SoC

CPU CPUGPU

GPU-accelerated operators (both stateless and stateful)
• Micro-batching
• Kernels defined in the runtime system, user provides device 

functions called by the kernels
• Automatic H2D and D2H data transfers performed with high 

overlapping capabilities

Stateful operators are challenging on GPUs



Larger-than-Memory Stateful Processing

• Large aggregations over temporal windows

• State might exceed the available memory (especially on Edge resources)

29/05/2025 DAYstributed 2025, UniPI 5

incoming

tuples

window results

in-memory buffers

Stream key Tuple list

KVS

. . .

. . .

. . .

3. joining and sorting of all the 

required fragments and useful 

tuples in the in-memory bu ffer

4. creation of the window 

iterator

history buffer

win_min win_max

1. insert a tuple into the 

buffer of the stream key

2. if the buffer is full, it becomes a 

fragment serialized in the KVS. 

Metadata are saved in memory

5. purge 

old 

fragments

Persistent Keyed Windowed 

Operator

min, max, id min, max, id min, max, id

min, max, id min, max, id min, max, id

min, max, id min, max, id min, max, id

<0, 6, 0> <4, 9, 1> <8, 14, 2>

<1, 5, 4> <5, 8, 5> <9, 10, 6>

<0, 3, 2> <1, 8, 3> <6, 11, 4>

Different layouts to represent the state on a KVS
• Fragment-based vs window-centric layouts
• Keyed vs unkeyed state objects

Trade-offs between performance-memory footprint-
secondary memory usage



Research Ideas for the Future

• Dynamic selection of CPU-based or GPU-based operators based on the 
workload conditions

• Adapt the machine configuration (e.g., DVFS, idle cores, GPU freq) based 
on the actual workload

• Use of lossless compression to further reduce the state size

• Use of WindFlow as a highly efficient system for ML inference
o Why? WindFlow provides advanced functionalities for online stream 

transformations, aggregation, sampling, windowing but lacks support for ML model 
management. However, ML tools such as TensorFlow, PyTorch provide limited 
support to streaming

o How? Embed ML models into WindFlow (e.g., interoperability with external libraries 
such as ONNX Runtime), or alternatively use external serving frameworks such as 
TensorFlow Serving or TorchServe

29/05/2025 DAYstributed 2025, UniPI 6


	Slide 1: Efficient Stream Processing on Resource-Constrained Devices
	Slide 2: Stream Processing + Edge Resources
	Slide 3: WindFlow Library
	Slide 4: Hardware Accelerators
	Slide 5: Larger-than-Memory Stateful Processing
	Slide 6: Research Ideas for the Future

