Efficient Stream Processing
on Resource-Constrained
Devices

Contributors: G. Mencagli, M. Danelutto, P. Dazzi, and M. Torquati
10+ students involved over the years (Bachelor, Master)

Stream Processing + Edge Resources

Computing paradigm characterized by the continuous analysis of data
streams (e.g., finding insights, knowledge, analytics)

|

i1

data-flow O

O
graph of
operators
and streams \
O
’ “ . DA STORM

b
29/05/2025 Edge device DAYstributea 2uz>, Uniri 2

stateful and
stateless
operators

WindFlow Library

C++17 library written on top of the FastFlow parallel programming
framework

PipeGraph app;
OP1 oEE m o@om@ oP3 Source src = Source Builder (..)

.withParallelism(2)
.build() ;

Map opl = Map_Builder([] (input_t &t) -> void {..})
.withParallelism(2)
.build() ;

FlatMap op2 = FlatMap Builder([] (input_t &t, Shipper<output_t> &s) {..}
.withParallelism(2)
.build() ;

Aggregation op3 = Aggregation Builder ([] (const output_t &tl,

threads OP1;0P2 const output_t &t2) -> output t {..})
——— Co .withParallelism(2)
.withKeyBy ([] (const output t &t) -> key_t {..})
SRC .withTimeBoundaries (seconds(10), seconds(1l))
E .build() ;
E Sink sink = Sink Builder(..)
\\AON;OPZ .withParallelism(2)
.build() ;
configurable — lock-free queues
concurrency control app .add_source(src) .add (opl) .add (op2) .add (op3) .add_sink (snk) ;

29/05/2025 DAYstributed 2025, UniPI 3

Hardware Accelerators

Edge resources as complex System-on-Chip devices (CPU+GPU+FPGA+ ...)

GPU-accelerated operators (both stateless and stateful)
* Micro-batching

* Kernels defined in the runtime system, user provides device
functions called by the kernels

* Automatic H2D and D2H data transfers performed with high
overlapping capabilities

Stateful operators are challenging on GPUs

time
D>

I | .

I P et et

0000600600 .E:. 0.

5.14.9 4.8 4.3,3.8 3128 2.1::1.2 0.8 0.1
I

| e ek r=-
A i

window 1

]
window 3

CPU [GPU] CcPU

fs————— window —— |

29/05/2025 DAYstributed 2025, UniPI

Larger-than-Memory Stateful Processing

 Large aggregations over temporal windows

» State might exceed the available memory (especially on Edge resources)

in-memory
state

N

N

!

!

in-memory
state

Different layouts to represent the state on a KVS
* Fragment-based vs window-centric layouts

* Keyed vs unkeyed state objects

Trade-offs between performance-memory footprint-

secondary memory usage

29/05/2025

Key-Value ; -
Store <«—>
(e.g., RocksDB) [P ‘ (

DAYstributed 2025

Persistent Keyed Windowed
R —
oEEE Operator 00

T window results

incoming
tuples 1. insert a tuple into the

buffer of the stream key

in-memory buffers

Stream key Tuple list Ewin_ming, y win_max E
B—EN 1] v LTI 1T o
tem history buffer ‘= —------------- !

3. joining and sorting of all the
.—m > required fragments and useful

tuples in the in-memory buffer
2. if the buffer is full, it becomes a
fragment serialized in the KVS.
Metadata are saved in memory

, UniPI

Research Ideas for the Future

* Dynamic selection of CPU-based or GPU-based operators based on the
workload conditions

e Adapt the machine configuration (e.g., DVFS, idle cores, GPU freq) based
on the actual workload

* Use of lossless compression to further reduce the state size

* Use of WindFlow as a highly efficient system for ML inference

o Why? WindFlow provides advanced functionalities for online stream
transformations, aggregation, sampling, windowing but lacks support for ML model
management. However, ML tools such as TensorFlow, PyTorch provide limited

support to streaming

o How? Embed ML models into WindFlow (e.g., interoperability with external libraries
such as ONNX Runtime), or alternatively use external serving frameworks such as

TensorFlow Serving or TorchServe

29/05/2025 DAYstributed 2025, UniPI

	Slide 1: Efficient Stream Processing on Resource-Constrained Devices
	Slide 2: Stream Processing + Edge Resources
	Slide 3: WindFlow Library
	Slide 4: Hardware Accelerators
	Slide 5: Larger-than-Memory Stateful Processing
	Slide 6: Research Ideas for the Future

